biodiversity is hidden deep in its habitat (see image). Moreover, identification is often not the most important reason to collect voucher specimens. Studies of morphological diversity and its evolution are impossible without whole specimens. Preserved specimens also provide verifiable data points for monitoring species health, distribution, and phenotypes through time. Both historical and new collections played a key role in understanding the spread of the chytrid fungus infection, one of the greatest current threats to amphibians (5). The decision to ban dichlorodiphenyltrichloroethane (DDT) and other environmental pollutants was the result of the discovery of thinning of bird eggs collected over an extended period (6). One of the negative effects of climate change, declining body size in animals, was only discovered with morphological data from museum specimens (7). Furthermore, IUCN Red List criteria require specific and detailed information about life history and biology (such as longevity and growth rate), especially for widely distributed species; therefore, without specimens, the extinction risk of many species cannot be properly assessed (8). Most specimens were not collected with these objectives in mind, and this is a hallmark of biological collections: They are often used in ways that the original collector never imagined. With new technologies continuing to emerge (such as stable isotope analyses, massive parallel sequencing, and CT-scan tomography), scientific collections are becoming even more important for studies of ecology, evolution, and conservation (9).

The arguments of Minteer et al. erroneously portray the critical importance of scientific collecting in a negative light and distract from the primary causes of modern extinction: habitat degradation and loss, unsustainable harvesting, and invasive species (10). It is important to distinguish protecting the lives of individuals from conserving populations and species. Individuals are lost every day to predation, natural death, and anthropogenic factors, hence it is the populations we try to save. Halting collection of voucher specimens by scientists would be detrimental not only to our understanding of Earth’s diverse biota and its biological processes, but also for conservation and management efforts. Species descriptions, biodiversity inventories, and the identification of areas of endemism are just some of the basic information that can be obtained from specimens and collections-based research. Such knowledge, with its rich temporal and spatial dimensions, has proven fundamental in designing conservation areas and in making environmental impact assessments (11). These issues are particularly relevant in many developing nations, which ideally must seek a balance between the conservation of their natural (biological) resources and development. One example comes from the Bird’s Head Peninsula of New Guinea, Indonesia, where the discovery and description of small endemic species—undetectable without specimen collection—directly resulted in the creation of several new protected areas and increased support for marine parks (12).

With our ever-increasing footprint, humans now affect even the most remote corners of Earth. Because an estimated 86% of species on the planet remain unknown (13), our goal should be to document biodiversity as rigorously as possible through carefully planned collections so that it can be effectively preserved.
and understood. Specimens from such collections and their associated data are essential for making informed decisions about management and conservation now and in the future. As a community, we advocate the utmost responsibility and care while making scientific collections (4). Furthermore, given increasing rates of habitat loss and global change, we believe that responsibly collecting voucher specimens and associated data and openly sharing this knowledge (for example, through GBIF, iDigBio, and VertNet) are more necessary today than ever before.

calacademy.org

Specimen collection: Plan for the future

WE WISH THAT B. A. Minteer et al’s claim that field biologists routinely collect voucher specimens were true [“Avoiding (re)extinction,” Perspectives, 18 April, p. 260]. Any museum curator will tell you that it is a constant struggle to convince them to do so, despite countless publications rendered unreliable because it is impossible to verify species’ identities. The necessity of voucher specimens varies by taxon and region, but in general, it is good practice to deposit them and as much data as possible, including DNA and photos in life.

We certainly do not wish to see any species driven to extinction by overcollecting, but submit that this is rare and more associated with commercial or ardent, recreational overcollecting than sensible scientific vouchers (1, 2). If the kill of a single individual increases the extinction risk of a species, then it is well below viable population size and already among the “walking dead.”

Dawkins’ description of evolution as improbable on a colossal scale is nowhere more evident than in morphology. Whether or not a species survives, museum specimens represent a window on many of its most remarkable novelties. Molecular data, although helpful in identifications, is neither a panacea nor surrogate for museum specimens, especially when it comes to newly discovered species. Describing a new species without depositing a holotype when a specimen can be preserved borders on taxonomic malpractice. Even given good photographs and a tissue sample, there are reasons to collect one or more complete specimens. We do not know what morphological characters will prove important in future studies of species status, phylogenetic

REFERENCES